\(\int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\) [131]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 31, antiderivative size = 103 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d} \]

[Out]

a^(3/2)*(3*A+2*B)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+a^2*(A-2*B)*sin(d*x+c)/d/(a+a*sec(d*x+c)
)^(1/2)+2*a*B*sin(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.129, Rules used = {4103, 4100, 3859, 209} \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d} \]

[In]

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]

[Out]

(a^(3/2)*(3*A + 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a^2*(A - 2*B)*Sin[c + d*x])
/(d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*B*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+2 \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (A-2 B)+\frac {1}{2} a (A+2 B) \sec (c+d x)\right ) \, dx \\ & = \frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}+\frac {1}{2} (a (3 A+2 B)) \int \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d}-\frac {\left (a^2 (3 A+2 B)\right ) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.72 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.89 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^2 \left ((3 A+2 B) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )+(2 B+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

[In]

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]

[Out]

(a^2*((3*A + 2*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]] + (2*B + A*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x
])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(307\) vs. \(2(93)=186\).

Time = 18.38 (sec) , antiderivative size = 308, normalized size of antiderivative = 2.99

method result size
default \(\frac {a \left (3 A \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+2 B \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )+3 A \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+A \cos \left (d x +c \right ) \sin \left (d x +c \right )+2 B \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}+2 B \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (\cos \left (d x +c \right )+1\right )}\) \(308\)

[In]

int(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

a/d*(3*A*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*cos(d*x+c)+2*B*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*cos(d*x+c)+3*A*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)
/(cos(d*x+c)+1))^(1/2))+A*cos(d*x+c)*sin(d*x+c)+2*B*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)
+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2*B*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 292, normalized size of antiderivative = 2.83 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\left [\frac {{\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right ) + {\left (3 \, A + 2 \, B\right )} a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (A a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {{\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right ) + {\left (3 \, A + 2 \, B\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (A a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d \cos \left (d x + c\right ) + d}\right ] \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

[1/2*(((3*A + 2*B)*a*cos(d*x + c) + (3*A + 2*B)*a)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d
*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(A*a*cos(d*
x + c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -(((3*A + 2*B)*a*c
os(d*x + c) + (3*A + 2*B)*a)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(
d*x + c))) - (A*a*cos(d*x + c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)
+ d)]

Sympy [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1801 vs. \(2 (93) = 186\).

Time = 0.50 (sec) , antiderivative size = 1801, normalized size of antiderivative = 17.49 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

1/4*((2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - (a*cos(d*x + c) - a)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4
)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*
(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*a
rctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c
) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arc
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1)
+ a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))*A + 2*((a*arctan2((cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*s
in(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), c
os(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)
*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)
) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*
c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*(cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + 4*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (a*cos(1/2*arctan2(sin(2*d*x + 2*c)
, cos(2*d*x + 2*c))) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a))*B/(cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4))/d

Giac [F]

\[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right ) \,d x } \]

[In]

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int \cos \left (c+d\,x\right )\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2), x)